Sex Differences in the Role of CNIH3 on Spatial Memory and Synaptic Plasticity.

CNIH3 在空间记忆和突触可塑性中的作用存在性别差异

阅读:5
作者:Frye Hannah E, Izumi Yukitoshi, Harris Alexis N, Williams Sidney B, Trousdale Christopher R, Sun Min-Yu, Sauerbeck Andrew D, Kummer Terrance T, Mennerick Steven, Zorumski Charles F, Nelson Elliot C, Dougherty Joseph D, Morón Jose A
BACKGROUND: CNIH3 is an AMPA receptor (AMPAR) auxiliary protein prominently expressed in the dorsal hippocampus (dHPC), a region that plays a critical role in spatial memory and synaptic plasticity. However, the effects of CNIH3 on AMPAR-dependent synaptic function and behavior have not been investigated. METHODS: We assessed a gain-of-function model of Cnih3 overexpression in the dHPC and generated and characterized a line of Cnih3(-/-) C57BL/6 mice. We assessed spatial memory through behavioral assays, protein levels of AMPAR subunits and synaptic proteins by immunoblotting, and long-term potentiation in electrophysiological recordings. We also utilized a super-resolution imaging workflow, SEQUIN (Synaptic Evaluation and Quantification by Imaging of Nanostructure), for analysis of nanoscale synaptic connectivity in the dHPC. RESULTS: Overexpression of Cnih3 in the dHPC improved short-term spatial memory in female mice but not in male mice. Cnih3(-/-) female mice exhibited weakened short-term spatial memory, reduced dHPC synapse density, enhanced expression of calcium-impermeable AMPAR (GluA2-containing) subunits in synaptosomes, and attenuated long-term potentiation maintenance compared with Cnih3(+/+) control mice; Cnih3(-/-) males were unaffected. Further investigation revealed that deficiencies in spatial memory and changes in AMPAR composition and synaptic plasticity were most pronounced during the metestrus phase of the estrous cycle in female Cnih3(-/-) mice. CONCLUSIONS: This study identified a novel effect of sex and estrous on CNIH3's role in spatial memory and synaptic plasticity. Manipulation of CNIH3 unmasked sexually dimorphic effects on spatial memory, synaptic function, AMPAR composition, and hippocampal plasticity. These findings reinforce the importance of considering sex as a biological variable in studies of memory and hippocampal synaptic function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。