A CRISPR mis-insertion in the Zic3 5'UTR inhibits in vivo translation and is predicted to result in formation of an mRNA stem-loop hairpin.

Zic3 5'UTR 中的 CRISPR 错误插入会抑制体内翻译,预计会导致 mRNA 茎环发夹的形成

阅读:16
作者:Bellchambers Helen M, Padua Maria B, Ware Stephanie M
Zic3 loss of function is associated with a range of congenital defects, including heterotaxy and isolated heart defects in humans, as well as neural tube defects, situs anomalies, and tail kinks in model organisms. Here, we describe a novel Zic3ins5V mouse line generated due to a mis-insertion during the CRISPR genome editing process, which altered the Zic3 5'UTR structure. Mice with this insertion developed similar phenotypes to Zic3LacZ null mice, including heterotaxy, isolated heart defects, neural tube defects and tail kinks. Surprisingly, gene expression analysis revealed that the novel Zic3ins5V line displays higher levels of Zic3 mRNA, but western blot analysis confirmed that levels of ZIC3 were greatly reduced in vivo. RNAfold, an RNA secondary structure prediction tool, showed that this mis-insertion may cause the formation of a large stem-loop hairpin incorporating some of the 5'UTR and first exon of Zic3, and the insertion of similar hairpins in a cell-based assay caused the loss of ZIC3 expression. Thus, this mouse line displays a loss of ZIC3 protein consistent with the inhibitory effects of 5'UTR stem-loop hairpin structures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。