Comparison of Primary Human Osteoblast-like Cells and hFOB 1.19 Cells: Contrasting Effects of Proinflammatory Cytokines.

原代人成骨细胞样细胞与 hFOB 1.19 细胞的比较:促炎细胞因子的相反作用

阅读:4
作者:Bousch Juliana Franziska, Beyersdorf Christoph, Schultz Katharina, Schnitker Matthis, Suschek Christoph Viktor, Maus Uwe
Proinflammatory cytokines such as IL-1β, IL-6, and TNF-α are key mediators of inflammatory bone loss and are commonly described as inhibitors of osteoblast function. However, their effects on osteogenesis remain controversial, likely due to the differences in the cell models and experimental settings in in vitro studies. We recently showed that these cytokines significantly enhanced the mineralization of primary human osteoblast-like cells (OBs). Here, we provide the first analysis of cytokine effects on the osteogenesis of the widely used human osteoblastic cell line hFOB 1.19 and compare them to primary OBs. Unexpectedly, all three cytokines significantly inhibited mineralization in hFOB 1.19 cells without affecting the proliferation. IL-1β and TNF-α also suppressed ALP activity, whereas IL-6 acted ALP-independent but increased the osteogenic marker expression despite the reduced mineralization, indicating a possible uncoupled differentiation and mineralization. Morphological and transcriptional analyses indicated that hFOB 1.19 cells represent an earlier osteogenic differentiation stage, while primary OBs show phenotypic heterogeneity and donor-dependent expression profiles. These data demonstrate that proinflammatory cytokines can have severely different effects on the osteogenesis of different cell models, supported by the highly contradictory findings reported in the literature. Nevertheless, elucidating the mechanisms underlying the inhibition of osteogenesis in hFOB 1.19 cells may provide important insights into the cell model and differentiation-stage-specific cytokine effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。