Tumor treating fields enhance anti-PD therapy by improving CCL2/8 and CXCL9/CXCL10 expression through inducing immunogenic cell death in NSCLC models.

肿瘤电场通过在非小细胞肺癌模型中诱导免疫原性细胞死亡来改善 CCL2/8 和 CXCL9/CXCL10 的表达,从而增强抗 PD 疗法

阅读:6
作者:Lin Wei, Wang Yingying, Li Minghao, Feng Jingjing, Yue Ying, Yu Jing, Hu Yanjiang, Suo Yuanzhen
BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Tumor treating fields (TTFields) combined with anti-PD immunotherapy offers a promising strategy to address this issue. Nevertheless, the mechanism of action (MOA) of TTFields therapy combined with anti-PD immunotherapy in NSCLC has not been thoroughly investigated. This study aims to elucidate the MOA of the combined therapy from the aspect of improving the tumor immune microenvironment (TIME). METHODS: Using a mouse model of NSCLC, we tested the efficacy of TTFields therapy with anti-PD-1 and anti-PD-L1 immunotherapy. By RNA-seq, the differential genes and signaling pathways between combination therapy and anti-PD therapy groups were studied. In-vitro experiments validated the effects of TTFields on tumor cells for CD4(+) T cell and CD8(+) T cell infiltration, as well as the expression of tumor immunogenic death related genes and chemokines. RESULTS: Combining TTFields with anti-PD-1 reduced tumor weight and volume, respectively, compared to controls (p < 0.05). RNA-seq analysis revealed 1,745 differentially expressed genes (DEGs) in the combination therapy group versus controls, including upregulated immune pathways and immunogenic cell death (ICD) associated genes. Further study showed that the combination therapy resulted in increased T cell infiltration compared to anti-PD immunotherapy alone, and TTFields induced higher level expression of ATP, HMGB1, CCL2, CCL8, CXCL9, and CXCL10 and inflammatory cytokines than control group. These effects collectively contributed to the altered TIME, and finally potentiated the efficacy of anti-PD therapy. CONCLUSIONS: TTFields enhance the effectiveness of anti-PD immunotherapy by improving CD4(+) T cells and CD8(+) T infiltration via inducing ICD to increase CCL2/8 and CXCL9/CXCL10 expression of tumor cells. This study provides theoretical basis and new insights for evaluating the effectiveness of TTFields combined with anti-PD therapy for NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。