BACKGROUND: Proliferative diabetic retinopathy (PDR) is among the primary causes of blindness in individuals with diabetes. Elevated lactate levels have been identified as a critical biomarker associated with the prognosis of PDR. While significant lactate accumulation has been observed in the vitreous fluid of PDR patients, the detailed pathways through which lactate impacts pathological neovascularization remain insufficiently elucidated. METHODS: The study employed single-cell RNA sequencing (scRNA-seq) to identify and characterize lactate-associated cell type in PDR patients. Key gene expression profiles and molecular pathways associated with lactate metabolism were analyzed. In vitro experiments were conducted using microglial cell cultures treated with high-glucose conditions (50Â mM) to assess the induction of lactate metabolism-related genes. Additionally, an oxygen-induced retinopathy (OIR) mouse model was used to evaluate the impact of abemaciclib, an FDA-approved proliferation inhibitor, on retinal neovascularization. RESULTS: To the best of our knowledge, this investigation is the first to delineate a novel microglial subset, designated as MKI67(+) microglia, distinguished by robust upregulation of genes implicated in lactate metabolic processes and proliferation, such as MKI67, PARK7 and LDHA, as well as a pronounced enrichment of glycolysis-associated molecular pathways. This unique cell type promotes angiogenesis by interacting with endothelial cells via secreted phosphoprotein 1 (SPP1)-Integrin alpha 4 (ITGA4) signaling. In vitro experiments have shown the use of 50Â mM high glucose to simulate microglia in PDR environment and observe its promotion of vascular proliferation. In the in vivo OIR model, treatment with abemaciclib, a FDA-approved proliferation inhibitor, significantly reduced neovascularization. CONCLUSION: The identification of MKI67(+) microglia as a cell type strongly associated with lactate metabolism provides a novel perspective on the mechanisms underlying PDR onset. These findings expand our understanding of the cellular and metabolic dynamics in PDR, emphasizing potential implications for targeted therapeutic interventions.
Single-cell analysis identifies MKI67(+) microglia as drivers of neovascularization in proliferative diabetic retinopathy.
单细胞分析发现 MKI67(+) 小胶质细胞是增殖性糖尿病视网膜病变中新生血管形成的驱动因素
阅读:7
作者:Zou Keyi, Li Xue, Ren Bibo, Cheng Fu, Ye Jian, Ou Zelin
| 期刊: | Journal of Translational Medicine | 影响因子: | 7.500 |
| 时间: | 2025 | 起止号: | 2025 Mar 11; 23(1):310 |
| doi: | 10.1186/s12967-025-06320-w | 研究方向: | 细胞生物学 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
