A transparent, lateral-flow test strip coupled with a smartphone-based ambient light sensor was first proposed for detecting enzymatic inhibition and phosphorylation. The principle of the platform is based on the simultaneous measurement of the total amount of the enzyme and enzyme activity to biomonitor exposure to organophosphorus (OP) pesticides. In this study, butyrylcholinesterase (BChE) was adopted as the model enzyme and ethyl paraoxon was chosen as an analyte representing OP pesticides. The total amount of BChE was quantified by a sensitive colorimetric signal originating from a sandwich immunochromatographic assay utilizing PtPd nanoparticles as a colorimetric probe, which exhibited excellent catalytic activity for phenols. In the sandwich immunoassay, only one antibody against BChE was simultaneously utilized as the recognition antibody and the labeling antibody due to the tetrameric structure of native BChE. The BChE activity was estimated by another colorimetric signal using the Ellman assay. Both colorimetric signals on two separated test strips were detected by the smartphone-based ambient light sensor. The proposed sensor operated with an LED in a 3D-printed substrate, which emitted excitation light and transmitted it through a transparent, lateral-flow test strip. With the increase in the colorimetric signal in the test line of the test strip, the intensity of the transmitted light decreased. The smartphone-based sensor showed excellent linear responses for assaying the total amount of BChE and active BChE ranging from 0.05 to 6.4 nM and from 0.1 to 6.4 nM, respectively. A high portability and low detection limit were simultaneously realized in the common smartphone-based device. This low-cost, portable, easy-operation, and sensitive immunoassay strategy shows great potential for online detection of OP exposure and monitoring other disease biomarkers.
A Nanozyme- and Ambient Light-Based Smartphone Platform for Simultaneous Detection of Dual Biomarkers from Exposure to Organophosphorus Pesticides.
基于纳米酶和环境光的智能手机平台,可同时检测暴露于有机磷农药中的双重生物标志物
阅读:5
作者:Zhao Yuting, Yang Mingming, Fu Qiangqiang, Ouyang Hui, Wen Wei, Song Yang, Zhu Chengzhou, Lin Yuehe, Du Dan
| 期刊: | Analytical Chemistry | 影响因子: | 6.700 |
| 时间: | 2018 | 起止号: | 2018 Jun 19; 90(12):7391-7398 |
| doi: | 10.1021/acs.analchem.8b00837 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
