Development and Characterization of Hyaluronic Acid Microgels for Neural Regeneration Applications.

用于神经再生应用的透明质酸微凝胶的开发和表征

阅读:7
作者:Hickey Kassondra N, Grassi Shannon M, Bjorklund George R, Fumasi Fallon M, Veldhuizen Jaimeson, Witten Amanda M, Nikkhah Mehdi, Holloway Julianne L, Stabenfeldt Sarah E
Delivery of therapeutic compounds via biomaterial systems has shown promise for tissue regeneration following central nervous system (CNS) injuries. Stromal cell-derived factor-1a (SDF-1a) modulates progenitor cell recruitment to neural injury sites and may contribute to neural repair. However, SDF-1a has a short half-life and requires a delivery system to both protect and sustain its release. Here, we sought to develop a drug delivery platform capable of releasing SDF-1a in a controlled fashion while minimizing inflammation. We used modified hyaluronic acid and microfluidics to generate monodisperse microgels. Characterization of these microgels included size, tunability, degradation, and controlled release properties. Finally, we delivered SDF-1a-loaded microgels to a mouse model of traumatic brain injury at 7 days post-injury and assessed their impact on neural progenitor cell recruitment and astrogliosis. The microfluidic system generated highly monodisperse microgels that successfully encapsulated a matrix metalloproteinase (MMP)-cleavable SDF-1a peptide and retained sensitivity to collagenase. Following intracortical injections, the microgels did not exacerbate the astrocytic response compared to saline injections; no significant difference was observed in neural progenitor cell migration patterns compared to controls. Therefore, we developed a biocompatible microgel system that is highly adaptable for biological delivery and may be utilized in brain/neural applications without exacerbating neuroinflammation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。