Songbird vocal behavior, physiology, and brains-including neurogenesis-change between seasons. We examined seasonal differences in neurogenesis in three brain regions associated with vocal production and learning, HVC (letter-based proper name), robust nucleus of the arcopallium (RA), and Area X, and two brain regions associated with auditory perception, caudomedial nidopallium (NCM) and caudomedial mesopallium (CMM). To do this, we captured wild male and female European starlings (Sturnus vulgaris) in spring and fall, collected a blood sample, and minimized time from capture to tissue collection to limit suppressive effects of captivity on neurogenesis. We quantified neurogenesis using doublecortin (DCX) immunohistochemistry, counting new neurons of three DCX cell morphologies (multipolar, fusiform, and round). We found regional differences in types of morphologies expressed, and amount of neurogenesis across regions: NCM had more fusiform cells than all other regions, and RA had more round cells than other regions. Males had more neurogenesis in HVC in fall than in spring, but there was no seasonal difference in neurogenesis in HVC of females, perhaps reflecting sexually dimorphic vocal learning demands related to repertoire size and complexity. Plasma corticosterone was higher in spring than fall and was correlated with testis volume in males, but it was not correlated with another purported measure of stress, heterophil:lymphocyte ratio (HLR), nor with neurogenesis. Our results suggest that the addition of new neurons to specific regions and circuits may serve different functions for males and females, particularly in the context of vocal production, learning, and perceptual demands across seasons.
Seasonal patterns of neurogenesis in European starlings (Sturnus vulgaris) are region- and sex-specific.
欧洲椋鸟(Sturnus vulgaris)的神经发生季节性模式具有地域性和性别特异性
阅读:5
作者:Aitken Sean D T, Parks Broderick M B, Sollows Marjorie, Barber Colleen A, Phillmore Leslie S
| 期刊: | Journal of Neuroendocrinology | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Jun;37(6):e13455 |
| doi: | 10.1111/jne.13455 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
