Human stem cell-derived models have emerged as an important platform to study tissue differentiation and disease mechanisms. Those models could capitalize on biochemical and cell biological methodologies such as omics, autophagy, and organelle dynamics. However, epigenetic silencing in stem cells creates a barrier to apply genetically encoded tools. Here we investigate the molecular mechanisms underlying exogenously expressed gene silencing by employing multiple commonly used promoters in human induced pluripotent stem cells (iPSCs), glioblastoma cells (GBM), and embryonic kidney cells (HEK). We discover that all promoters tested are highly methylated on the CpG island regions with lower protein expression in iPSCs, as compared to non-iPSCs. Elongation factor 1 alpha short (EF1α short or EFS) promoter, which has fewer CpG island number compared to the other promoters, can drive relatively higher gene expression in iPSCs, despite CpG methylation. Adding a minimal A2 ubiquitous chromatin opening element (minimal A2 UCOE or miniUCOE) upstream of a promoter inhibits CpG methylation and enhances gene expression in iPSCs. Our results demonstrate stem cell type-specific epigenetic modification of transgenic promoter region and provide useful information for designing anti-silencing strategies to increase transgene expression in iPSCs.
Human stem cell-specific epigenetic signatures control transgene expression.
人类干细胞特异性表观遗传特征控制转基因表达
阅读:5
作者:Kwak Chulhwan S, Oflaz Furkan E, Qiu Jiamin, Wang Xinnan
| 期刊: | Biochimica et Biophysica Acta-Gene Regulatory Mechanisms | 影响因子: | 3.100 |
| 时间: | 2024 | 起止号: | 2024 Dec;1867(4):195063 |
| doi: | 10.1016/j.bbagrm.2024.195063 | 种属: | Human |
| 研究方向: | 表观遗传 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
