OBJECTIVE: We previously established the scaffold protein 14-3-3ζ as a critical regulator of adipogenesis and adiposity, but whether 14-3-3ζ exerted its regulatory functions in mature adipocytes or in adipose progenitor cells (APCs) remained unclear. METHODS: To decipher which cell type accounted for 14-3-3ζ-regulated adiposity, adipocyte- (Adipoq14-3-3ζKO) and APC-specific (Pdgfra14-3-3ζKO) 14-3-3ζ knockout mice were generated. To further understand how 14-3-3ζ regulates adipogenesis, Tandem Affinity Purification (TAP)-tagged 14-3-3ζ-expressing 3T3-L1 preadipocytes (TAP-3T3-L1) were generated with CRISPR-Cas9, and affinity proteomics was used to examine how the nuclear 14-3-3ζ interactome changes during the initial stages of adipogenesis. ATAC-seq was used to determine how 14-3-3ζ depletion modulates chromatin accessibility during differentiation. RESULTS: We show a pivotal role for 14-3-3ζ in APC differentiation, whereby male and female Pdgfra14-3-3ζKO mice displayed impaired or potentiated weight gain, respectively, as well as fat mass. Proteomics revealed that regulators of chromatin remodeling, like DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1), were significantly enriched in the nuclear 14-3-3ζ interactome and their activities were impacted upon 14-3-3ζ depletion. Enhancing DNMT activity with S-Adenosyl methionine rescued the differentiation of 14-3-3ζ-depleted 3T3-L1 cells. ATAC-seq revealed that 14-3-3ζ depletion impacted the accessibility of up to 1,244 chromatin regions corresponding in part to adipogenic genes, promoters, and enhancers during the initial stages of adipogenesis. Finally, 14-3-3ζ-regulated chromatin accessibility correlated with the expression of key adipogenic genes. CONCLUSION: Our study establishes 14-3-3ζ as a crucial epigenetic regulator of adipogenesis and highlights the usefulness of deciphering the nuclear 14-3-3ζ interactome to identify novel pro-adipogenic factors and pathways.
14-3-3ζ allows for adipogenesis by modulating chromatin accessibility during the early stages of adipocyte differentiation.
14-3-3ζ 通过在脂肪细胞分化的早期阶段调节染色质可及性来促进脂肪生成
阅读:8
作者:Rial Sabri A, You Zhipeng, Vivoli Alexis, Paré Fédéric, Sean Daphné, AlKhoury Amal, Lavoie Geneviève, Civelek Mete, Martinez-Sanchez Aida, Roux Philippe P, Durcan Thomas M, Lim Gareth E
| 期刊: | Molecular Metabolism | 影响因子: | 6.600 |
| 时间: | 2025 | 起止号: | 2025 Jul;97:102159 |
| doi: | 10.1016/j.molmet.2025.102159 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
