Methicillin-Resistant Staphylococcus aureus T144: A Hypervirulent Model Strain for Infection Models.

耐甲氧西林金黄色葡萄球菌T144:感染模型中的高毒力模型菌株

阅读:5
作者:Mao Changsi, Liu Yuan, Song Meirong, Shen Jianzhong, Zhu Kui
Background/Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) presents a major public health challenge due to its multidrug resistance and high virulence. Developing representative model strains is crucial for systematically assessing pathogenesis and antimicrobial therapies. Methods: The highly virulent MRSA strain T144, isolated from pigs, was characterized through whole-genome sequencing and antimicrobial susceptibility testing. Infection models were successfully established in Galleria mellonella and mice to evaluate virulence. A mouse lung infection model was specifically developed to assess bacterial load dynamics, immune responses, and the efficacy of vancomycin treatment. Results: MRSA T144 demonstrated broad-spectrum antibiotic resistance and high mortality rates in both Galleria mellonella and mouse models. Whole-genome sequencing identified multiple virulence-associated genes, including hemolysins and enterotoxins. The concentration of 7 × 10(8) CFUs was optimized for establishing the mouse lung infection model. In the mouse lung infection model, MRSA T144 demonstrated rapid bacterial proliferation within the first 24 h, followed by a slower growth rate. Significant changes in immune markers were observed, with elevated levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-17a, TNF-α) and decreased IL-10 levels. Vancomycin treatment significantly improved survival rates and reduced bacterial load, confirming the model's utility for antimicrobial efficacy studies. Conclusions: The successful establishment of MRSA T144 infection models provides a robust platform for investigating bacterial dynamics, immune responses, and antimicrobial efficacy against highly virulent MRSA strains. These findings highlight the potential of MRSA T144 as a valuable model for developing novel therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。