Bacteriophage exclusion ('BREX') systems are multi-protein complexes encoded by a variety of bacteria and archaea that restrict phage by an unknown mechanism. One BREX factor, termed BrxL, has been noted to display sequence similarity to various AAA+Â protein factors including Lon protease. In this study we describe multiple CryoEM structures of BrxL that demonstrate it to be a chambered, ATP-dependent DNA binding protein. The largest BrxL assemblage corresponds to a dimer of heptamers in the absence of bound DNA, versus a dimer of hexamers when DNA is bound in its central pore. The protein displays DNA-dependent ATPase activity, and ATP binding promotes assembly of the complex on DNA. Point mutations within several regions of the protein-DNA complex alter one or more in vitro behaviors and activities, including ATPase activity and ATP-dependent association with DNA. However, only the disruption of the ATPase active site fully eliminates phage restriction, indicating that other mutations can still complement BrxL function within the context of an otherwise intact BREX system. BrxL displays significant structural homology to MCM subunits (the replicative helicase in archaea and eukaryotes), implying that it and other BREX factors may collaborate to disrupt initiation of phage DNA replication.
Structure, substrate binding and activity of a unique AAA+Â protein: the BrxL phage restriction factor.
一种独特的 AAA+Â 蛋白的结构、底物结合和活性:BrxL 噬菌体限制因子
阅读:5
作者:Shen Betty W, Doyle Lindsey A, Werther Rachel, Westburg Abigail A, Bies Daniel P, Walter Stephanie I, Luyten Yvette A, Morgan Richard D, Stoddard Barry L, Kaiser Brett K
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2023 | 起止号: | 2023 May 8; 51(8):3513-3528 |
| doi: | 10.1093/nar/gkad083 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
