Antibodies Elicited in Response to a Single Cycle Glycoprotein D Deletion Viral Vaccine Candidate Bind C1q and Activate Complement Mediated Neutralization and Cytolysis

响应单周期糖蛋白 D 缺失病毒疫苗候选物而产生的抗体结合 C1q 并激活补体介导的中和和细胞溶解

阅读:6
作者:Maria Luisa Visciano, Aakash Mahant Mahant, Carl Pierce, Richard Hunte, Betsy C Herold

Abstract

Herpes simplex virus (HSV) prevention is a global health priority but, despite decades of research, there is no effective vaccine. Prior efforts focused on generating glycoprotein D (gD) neutralizing antibodies, but clinical trial outcomes were disappointing. The deletion of gD yields a single-cycle candidate vaccine (∆gD-2) that elicits high titer polyantigenic non-gD antibodies that exhibit little complement-independent neutralization but mediate antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Active or passive immunization with DgD-2 completely protects mice from lethal disease and latency following challenge with clinical isolates of either serotype. The current studies evaluated the role of complement in vaccine-elicited protection. The immune serum from the DgD-2 vaccinated mice exhibited significantly greater C1q binding compared to the serum from the gD protein vaccinated mice with infected cell lysates from either serotype as capture antigens. The C1q-binding antibodies recognized glycoprotein B. This resulted in significantly greater antibody-mediated complement-dependent cytolysis and neutralization. Notably, complete protection was preserved when the DgD-2 immune serum was passively transferred into C1q knockout mice, suggesting that ADCC and ADCP are sufficient in mice. We speculate that the polyfunctional responses elicited by DgD-2 may prove more effective in preventing HSV, compared to the more restrictive responses elicited by adjuvanted gD protein vaccines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。