Development of NIR photocleavable nanoparticles with BDNF for vestibular neuron regeneration.

开发含 BDNF 的近红外光可裂解纳米粒子用于前庭神经元再生

阅读:7
作者:Abueva Celine Dg, Yoon Sung Ryeong, Carpena Nathaniel T, Ahn Seung Cheol, Chang So-Young, Choi Ji Eun, Lee Min Young, Jung Jae Yun
Among nanoparticle platforms, light or photoresponsive nanoparticles have emerged as a promising drug delivery strategy with spatiotemporal control while minimizing off-target effects. The characteristic absorption spectrum of the photoresponsive moiety dictates the wavelength of light needed to activate bond cleavage. However, the low tissue penetration depth limit and short-wavelength ultraviolet (UV) cellular toxicity are considered disadvantageous. This study developed a vestibular ganglion neuron organoid as a model for vestibulopathy. UV and near-infrared (NIR) radiation targeted the inner ear and neural cells, followed by toxicity evaluation. A significantly smaller toxicity of NIR light was confirmed. The photocleavage release of brain-derived neurotrophic factor (BDNF) was used by applying NIR wavelength. The results indicate that polyethylene glycol octamethylene diamine derivative conjugated with leucomethylene blue with an ethanolamine linker nanoparticle can be effectively disassembled and release BDNF when using the 808 nm laser as a trigger. The findings of the cytotoxicity assay suggest that photocleavable nanoparticles (PCNs) and laser irradiation are safe and biocompatible for human-derived and neural progenitor types of cells. Phototriggered BDNF release by NIR laser supported the growth and differentiation of human neural progenitor cells in culture. In addition, the vestibulopathy organoid exhibited a significant regenerative effect. This study harnesses the full potential of NIR laser PCNs to treat vestibular neuropathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。