Macrophages are specialised cells that degrade a range of substrates during their lifetime. In inherited lysosomal storage disorders, particularly the sphingolipidoses, macrophages transform into storage cells and contribute to pathology. An appropriate cultured macrophage model is desired for fundamental research and the assessment of considered therapeutic interventions. We compared commonly used macrophage cell lines, RAW264.7, J774A.1, and THP-1 cells, with human monocyte-derived macrophages (HMDMs) isolated from peripheral blood. Specific lysosomal glucosidases were analysed by enzymatic activity measurements and visualised with fluorescent activity-based probes. Special attention was given to lysosomal glucocerebrosidase (GBA1), the enzyme deficient in Gaucher disease in which lipid-laden macrophages are a hallmark. In macrophage cell lines and HMDMs, various (glyco)sphingolipids relevant to GBA1 activity were determined. Finally, the feasibility of inactivation of GBA1 with a cell-permeable suicide inhibitor was established, as well as the monitoring of uptake of therapeutic recombinant human GBA1. Major differences among various cell lines were noted in terms of morphology, lysosomal enzyme expression, and glycosphingolipid content. HMDMs appear to be the most suitable model for investigations into GBA1 and Gaucher disease. Moreover, they serve as a valuable model for mannose-receptor mediated uptake of therapeutic human GBA1, effectively mimicking enzyme replacement therapy for Gaucher disease.
Cultured Macrophage Models for the Investigation of Lysosomal Glucocerebrosidase and Gaucher Disease.
用于研究溶酶体葡糖脑苷脂酶和戈谢病的培养巨噬细胞模型
阅读:5
作者:Louwerse Max, Bila Kateryna O, van der Lienden Martijn J C, de Beaufort Arnout Jan M, Boot Rolf G, Artola Marta, van Eijk Marco, Aerts Johannes M F G
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 18; 26(6):2726 |
| doi: | 10.3390/ijms26062726 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
