Glycosphingolipids (GSL) are important bioactive membrane components. GSLs containing sialic acids, known as gangliosides, are highly abundant in the brain and diseases of ganglioside metabolism cause severe early-onset neurodegeneration. The ganglioside GM2 is processed by β-hexosaminidase A and when non-functional GM2 accumulates causing Tay-Sachs and Sandhoff diseases. We have developed i3Neuron-based disease models demonstrating storage of GM2 and severe endolysosomal dysfunction. Additionally, the plasma membrane (PM) is significantly altered in its lipid and protein composition. These changes are driven in part by lysosomal exocytosis causing inappropriate accumulation of lysosomal proteins on the cell surface. There are also significant changes in synaptic protein abundances with direct functional impact on neuronal activity. Lysosomal proteins are also enriched at the PM in GM1 gangliosidosis supporting that lysosomal exocytosis is a conserved mechanism of PM proteome change in these diseases. This work provides mechanistic insights into neuronal dysfunction in gangliosidoses highlighting that these are severe PM disorders with implications for other lysosomal and neurodegenerative diseases.
Plasma membrane remodeling in GM2 gangliosidoses drives synaptic dysfunction.
GM2神经节苷脂沉积症中的质膜重塑导致突触功能障碍
阅读:8
作者:Nicholson Alex S, Priestman David A, Antrobus Robin, Williamson James C, Bush Reuben, McKie Shannon J, Barrow Henry G, Smith Emily, Dobrenis Kostantin, Bright Nicholas A, Platt Frances M, Deane Janet E
| 期刊: | PLoS Biology | 影响因子: | 7.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 3; 23(7):e3003265 |
| doi: | 10.1371/journal.pbio.3003265 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
