The ability of cells to power energy-demanding processes depends on maintaining the ATP hydrolysis reaction a billion-fold away from equilibrium. Cells respond to changes in energy state by sensing changes in ATP, ADP, AMP, and inorganic phosphate. A key barrier to a better understanding of the maintenance of energy homeostasis is a lack of tools for direct manipulation of energy state in living cells. Here, we report the development of ATPGobble-a genetically encoded tool for controlling cellular ATP hydrolysis rate. We validated ATPGobble by showing that it doubles the energy demand, decreases [ATP]/[ADP] and [ATP]/[AMP] ratios, and activates AMPK activity in human cells. We then used ATPGobble to systematically characterize the proteome and phosphoproteome changes caused by direct manipulation of the energy state. Our results establish ATPGobble as a powerful approach for dissecting the regulatory roles of energy state in human cells, opening new opportunities to study how cellular energy state governs physiology, stress responses, and disease processes.
Genetically encoded tool for manipulation of ATP/ADP ratio in human cells.
用于操控人体细胞中 ATP/ADP 比率的基因编码工具
阅读:5
作者:Ekvik Alex E, Kober Megan M, Titov Denis V
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 23 |
| doi: | 10.1101/2025.08.12.670003 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
