snRNA-Seq and Spatial Transcriptome Reveal Cell-Cell Crosstalk Mediated Metabolic Regulation in Porcine Skeletal Muscle.

snRNA-Seq 和空间转录组揭示了猪骨骼肌中细胞间串扰介导的代谢调控

阅读:4
作者:Guo Liu, Han Mengmeng, Xu Junfei, Zhou Wenyue, Shi Hanjing, Chen Sisi, Pang Weijun, Zhang Xing, Duan Yehui, Yin Yulong, Li Fengna
BACKGROUND: Cell-cell crosstalk between myogenic, adipogenic and immune cells in skeletal muscle to regulate energy metabolism and lipid deposition has received considerable attention. The specific mechanisms of interaction between the different cells in skeletal muscle are still unclear. METHODS: Using integrated analysis of snRNA-seq and spatial transcriptome, the gene expression profile of longissimus dorsi (LD) muscle was compared between adult Taoyuan black (TB, obese, native Chinese breed) and Duroc (lean) pigs. RESULTS: TB pig had more intramuscular fat (IMF) deposition (3.91%, p = 0.0244) and higher slow myofiber proportion (17.13%, p < 0.0001) compared with Duroc pig (IMF, 2.38%; slow myofiber, 6.92%) at the age of 180 days. We identified eight cell populations in porcine LD muscle. Five subpopulations of myonuclei and 10 subclusters of fibro/adipogenic progenitors (FAPs) were defined by marker genes. CellChat analysis revealed that communication between immune cells and other cells via the BMP and EGF signalling pathway was only observed in Duroc and not in TB pig. Both snRNA-seq and spatial transcriptome pointed out that FAPs are the important source of secretory proteins. A total of 35 upregulated and 23 downregulated differentially expressed genes (DEGs) were annotated as secretory, one upregulated and 36 downregulated secretory DEGs were identified between TB and Duroc pigs in FAPs by snRNA-seq and FAPs-high regions by spatial transcriptome, respectively. The distribution of FAPs was accompanied by the divergent myofiber-type composition. The expression level of slow myofiber marker gene (MYH7) was higher in both FAPs-high and FAPs-low regions of TB compared with Duroc pig (p < 0.0001), and expression level of fast myofiber maker gene (MYH1) was upregulated in FAPs-high region of Duroc compared with FAPs-high region of TB (p < 0.0001) and FAPs-low region of Duroc pig (p = 0.0002). The metabolic differences of myofibers between TB and Duroc pigs were mainly concentrated in energy, lipid and nitrogen metabolism-related pathway (p < 0.05). The significant correlation (R > 0.4, p < 0.05) between secretory and metabolism-related DEGs with spatial aggregation was verified by regression analysis for random region extraction (area of 25 spots, n = 400) from spatial transcriptome, and we speculated that the alteration of secretory proteins forming the microenvironment might regulate myofiber metabolism via target genes such as IRS1, PLPP1 and SLC38A2. CONCLUSIONS: Our study provides new insights into skeletal muscle microenvironment that contributes to metabolic regulation and new methods and resources to study cell-cell communication in skeletal muscle.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。