Protein language models embed protein sequences for different tasks. However, these are suboptimal at learning the language of protein interactions. We developed an interaction language model (iLM), Sliding Window Interaction Grammar (SWING) that leverages differences in amino-acid properties to generate an interaction vocabulary. SWING successfully predicted both class I and class II peptide-major histocompatibility complex interactions. Furthermore, the class I SWING model could uniquely cross-predict class II interactions, a complex prediction task not attempted by existing methods. Using human class I and II data, SWING accurately predicted murine class II peptide-major histocompatibility interactions involving risk alleles in systemic lupus erythematosus and type 1 diabetes. SWING accurately predicted how variants can disrupt specific protein-protein interactions, based on sequence information alone. SWING outperformed passive uses of protein language model embeddings, demonstrating the value of the unique iLM architecture. Overall, SWING is a generalizable zero-shot iLM that learns the language of protein-protein interactions.
Sliding Window Interaction Grammar (SWING): a generalized interaction language model for peptide and protein interactions.
滑动窗口交互语法(SWING):一种用于肽和蛋白质相互作用的通用交互语言模型
阅读:5
作者:Siwek Jane C, Omelchenko Alisa A, Chhibbar Prabal, Arshad Sanya, Rosengart AnnaElaine, Nazarali Iliyan, Patel Akash, Nazarali Kiran, Rahimikollu Javad, Tilstra Jeremy S, Shlomchik Mark J, Koes David R, Joglekar Alok V, Das Jishnu
| 期刊: | Nature Methods | 影响因子: | 32.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;22(8):1707-1719 |
| doi: | 10.1038/s41592-025-02723-1 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
