2,5-Dihydroxybenzoic Acid Ameliorates Metabolic Dysfunction-Associated Steatotic Liver Disease by Targeting the CCL2-CCR2 Axis to Reduce Lipid Accumulation.

2,5-二羟基苯甲酸通过靶向 CCL2-CCR2 轴减少脂质积累,从而改善代谢功能障碍相关的脂肪肝疾病

阅读:5
作者:Hsiang Chien-Yun, Hsu Kuang-Ting, Lo Hsin-Yi, Hou Yun-Jhu, Ho Tin-Yun
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, contributing to metabolic dysfunction and increased healthcare costs. The green Mediterranean diet reduces intrahepatic fat and elevates the plasma levels of 2,5-dihydroxybenzoic acid (2,5-DHBA), suggesting a mechanistic role for 2,5-DHBA in hepatic lipid metabolism. This study aimed to evaluate the therapeutic potential of 2,5-DHBA in MASLD and elucidate its molecular mechanism. Methods: Lipid accumulation was assessed in oleic acid-treated HepG2 cells and a high-fat diet (HFD)-induced MASLD mouse model. RNA sequencing, molecular docking, and immunohistochemical staining were performed to investigate the molecular mechanisms, focusing on the chemokine (C-C motif) ligand 2 (CCL2)-CCL2 receptor (CCR2) axis. Results: 2,5-DHBA significantly reduced hepatic lipid accumulation in both HepG2 cells and HFD-fed mice in a dose-dependent manner. RNA sequencing revealed the marked downregulation of CCL2, a key proinflammatory mediator in MASLD pathogenesis. Molecular docking predicted that 2,5-DHBA competed with CCL2 for binding at the CCR2 axis. Immunohistochemistry further confirmed that 2,5-DHBA treatment lowered hepatic CCL2 expression, suppressed nuclear factor-κB activation, and reduced inflammatory cell infiltration. These findings suggest that 2,5-DHBA exerted anti-steatotic effects by modulating the CCL2-CCR2 signaling pathway. Conclusions: This is the first study to demonstrate that 2,5-DHBA attenuates hepatic steatosis via targeting the CCL2-CCR2 axis. These findings highlight its potential as a novel nutraceutical strategy for MASLD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。