Squidiff: Predicting cellular development and responses to perturbations using a diffusion model.

Squidiff:利用扩散模型预测细胞发育和对扰动的反应

阅读:4
作者:He Siyu, Zhu Yuefei, Tavakol Daniel Naveed, Ye Haotian, Lao Yeh-Hsing, Zhu Zixian, Xu Cong, Chauhan Sharadha, Garty Guy, Tomer Raju, Vunjak-Novakovic Gordana, Zou James, Azizi Elham, Leong Kam W
Single-cell sequencing has revolutionized our understanding of cellular heterogeneity and responses to environmental stimuli. However, mapping transcriptomic changes across diverse cell types in response to various stimuli and elucidating underlying disease mechanisms remains challenging. Studies involving physical stimuli, such as radiotherapy, or chemical stimuli, like drug testing, demand labor-intensive experimentation, hindering mechanistic insight and drug discovery. Here we present Squidiff, a diffusion model-based generative framework that predicts transcriptomic changes across diverse cell types in response to environmental changes. We demonstrate Squidiff's robustness across cell differentiation, gene perturbation, and drug response prediction. Through continuous denoising and semantic feature integration, Squidiff learns transient cell states and predicts high-resolution transcriptomic landscapes over time and conditions. Furthermore, we applied Squidiff to model blood vessel organoid development and cellular responses to neutron irradiation and growth factors. Our results demonstrate that Squidiff enables in silico screening of molecular landscapes, facilitating rapid hypothesis generation and providing valuable insights for precision medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。