Mitochondrial ROS control neuronal excitability and cell fate in frontotemporal dementia.

线粒体活性氧控制额颞叶痴呆中的神经元兴奋性和细胞命运

阅读:4
作者:Esteras Noemí, Kopach Olga, Maiolino Marta, Lariccia Vincenzo, Amoroso Salvatore, Qamar Seema, Wray Selina, Rusakov Dmitri A, Jaganjac Morana, Abramov Andrey Y
INTRODUCTION: The second most common form of early-onset dementia-frontotemporal dementia (FTD)-is often characterized by the aggregation of the microtubule-associated protein tau. Here we studied the mechanism of tau-induced neuronal dysfunction in neurons with the FTD-related 10+16 MAPT mutation. METHODS: Live imaging, electrophysiology, and redox proteomics were used in 10+16 induced pluripotent stem cell-derived neurons and a model of tau spreading in primary cultures. RESULTS: Overproduction of mitochondrial reactive oxygen species (ROS) in 10+16 neurons alters the trafficking of specific glutamate receptor subunits via redox regulation. Increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors containing GluA1 and NR2B subunits leads to impaired glutamatergic signaling, calcium overload, and excitotoxicity. Mitochondrial antioxidants restore the altered response and prevent neuronal death. Importantly, extracellular 4R tau induces the same pathological response in healthy neurons, thus proposing a mechanism for disease propagation. DISCUSSION: These results demonstrate mitochondrial ROS modulate glutamatergic signaling in FTD, and suggest a new therapeutic strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。