Mixed lineage kinase domain-like protein deficiency exacerbates early injury in a mouse model of acetaminophen hepatotoxicity.

混合谱系激酶结构域样蛋白缺乏会加剧对乙酰氨基酚肝毒性小鼠模型中的早期损伤

阅读:4
作者:Sanchez-Guerrero Giselle, Umbaugh David S, Smith Sawyer H, Akakpo Jephte Y, Jaeschke Hartmut, Ramachandran Anup
An overdose of acetaminophen (APAP) is the leading cause of drug-induced hepatotoxicity and acute liver failure in the United States. It is established that the predominant mode of hepatocyte cell death after an APAP overdose is through necrosis, and it is now recognized that this occurs through regulated pathways involving RIP kinases. These kinases, along with the pseudo-kinase MLKL, are central players in classical necroptotic cell death. Despite the skepticism regarding the role of necroptosis in APAP-induced liver injury, recent research demonstrating necroptosis-independent roles for MLKL led us to re-examine the role of this pseudo-kinase in APAP pathophysiology. Treatment of Mlkl-/- mice with a moderate (300 mg/kg) overdose of APAP resulted in an exacerbation of liver injury at 6- and 12-h post-APAP as evidenced by elevated plasma alanine aminotransferase activities, and extensive necrosis accompanied by diminished glutathione levels. Interestingly, these differences between Mlkl-/- and wild-type mice were negated at the 24-h mark, previously scrutinized by others. At 6 and 12 h post-APAP, Mlkl-/- mice exhibited augmented translocation of AIF and Endonuclease G without affecting JNK activation, suggesting enhanced mitochondrial permeability transition in the absence of MLKL. Lack of MLKL also impacted autophagy, the unfolded protein response and endoplasmic reticulum stress, with decreased levels of p62 and LC3B and increased expression of CHOP and GRP78 at 6 h post-APAP. In essence, our findings illuminate a noncanonical role for MLKL in the early phases of APAP-induced liver injury, warranting further exploration of its influence on APAP pathophysiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。