Mechanisms of Xuefu Zhuyu decoction in treating diabetic kidney disease-induced renal fibrosis: UPLC-Q/TOF-MS, network pharmacology, and experimental validation.

血府竹郁汤治疗糖尿病肾病引起的肾纤维化的机制:UPLC-Q/TOF-MS、网络药理学和实验验证

阅读:11
作者:Zhang Yifei, Zhang Shuaixing, Zhang Zeyu, Cao Zijing, Bai Xuehui, Zhang Shujiao, Zhou Mengqi, Tang Jingyi, Xie Yiran, Liu Zhongjie, Liu Weijing, Liu Yuning
Xuefu Zhuyu decoction (XFZY) has therapeutic effects on diabetic kidney disease (DKD)-induced renal interstitial fibrosis (RIF), but the mechanisms are unclear. This study investigates XFZY's molecular mechanisms through network pharmacology and experimental validation. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and database screening was used to identify XFZY bioactive compounds. Common targets between these compounds and DKD-induced RIF were analyzed. A protein-protein interaction network was constructed, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Molecular docking validated interactions between XFZY compounds and targets. In vivo, a mouse model of DKD-induced RIF was established using streptozotocin and a high-fat diet. In vitro, human kidney-2 cells were treated with advanced glycation end products. Renal function and pathology were assessed, along with key protein expression levels. Using UPLC-Q-TOF-MS technology and database screening, seven bioactive components of XFZY were identified. Network pharmacology identified 61 common targets, including core targets like AKT1, MTOR, ULK1, and MMP9. Enrichment analysis indicated the AMPK signaling pathway is closely related to XFZY's therapeutic effects on DKD-induced RIF. Molecular docking demonstrated the seven bioactive components exhibited high binding affinities with key targets in the AMPK pathway (AMPK, mTOR, ULK1). In vivo, XFZY improved renal function, ameliorated renal pathology, reduced tubular injury, and alleviated RIF. Both in vivo and in vitro, XFZY increased phosphorylated AMPK and phosphorylated ULK1 expression, decreased phosphorylated MTOR, and reduced LC3 and p62 expression in the autophagy pathway. XFZY may alleviate DKD-induced RIF by modulating autophagy via the AMPK/MTOR/ULK1 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。