ATAD2 Drives Prostate Cancer Progression to Metastasis.

ATAD2 驱动前列腺癌进展至转移

阅读:13
作者:Dutta Anindita, Rodriguez-Calero Antonio, Ronaldson-Bouchard Kacey, Offermann Anne, Rahman Daoud, Vhatkar Twinkle Bapuji, Hasson Dan, Alshalalfa Mohammed, Davicioni Elai, Karnes R Jeffrey, Rubin Mark A, Vunjak-Novakovic Gordana, Abate-Shen Cory, Arriaga Juan Martin
Metastasis accounts for the overwhelming majority of cancer deaths. In prostate cancer and many other solid tumors, progression to metastasis is associated with drastically reduced survival outcomes, yet the mechanisms behind this progression remain largely unknown. ATPase family AAA domain containing 2 (ATAD2) is an epigenetic reader of acetylated histones that is overexpressed in multiple cancer types and usually associated with poor patient outcomes. However, the functional role of ATAD2 in cancer progression and metastasis has been relatively understudied. Here, we employ genetically engineered mouse models of prostate cancer bone metastasis, as well as multiple independent human cohorts, to show that ATAD2 is highly enriched in bone metastasis compared with primary tumors and significantly associated with the development of metastasis. We show that ATAD2 expression is associated with MYC pathway activation in patient datasets and that, at least in a subset of tumors, MYC and ATAD2 can regulate each other's expression. Using functional studies on mouse bone metastatic cell lines and innovative organ-on-a-chip bone invasion assays, we establish a functional role for ATAD2 inhibition in reducing prostate cancer metastasis and growth in bone. Implications: Our study highlights ATAD2 as a driver of prostate cancer progression and metastasis and suggests it may constitute a promising novel therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。