Rising blast percentage or secondary acute myeloid leukemia (sAML) transformation in myeloproliferative neoplasms (MPNs) leads to JAK1/2 inhibitor (JAKi) therapy resistance and poor survival. Here, we demonstrate that treatment with the CDK7 inhibitor (CDK7i) SY-5609 depletes phenotypically characterized post-MPN sAML stem/progenitor cells. In cultured post-MPN sAML SET2, HEL and patient-derived (PD) post-MPN sAML cells, SY-5609 treatment inhibited growth and induced lethality while sparing normal cells. RNA-sequencing analysis after SY-5609 treatment reduced mRNA expression of MYC, MYB, CDK4/6, PIM1, and CCND1 but increased expression of CDKN1A and BCL2L1. Mass spectrometry of SY-5609-treated MPN-sAML cells also reduced c-Myc, c-Myb, PIM1, and CDK4/6 but increased p21, caspase-9, and BAD protein levels. CRISPR-mediated CDK7 depletion also reduced cell viability of HEL cells. Cytometry by time of flight (CyTOF) analysis of SY-5609-treated PD post-MPN sAML stem/progenitor cells showed reduced c-Myc, CDK6, and PU.1 but increased protein levels of CD11b, p21, and cleaved caspase-3. Cotreatment with SY-5609 and ruxolitinib was synergistically lethal in HEL, SET2, and PD post-MPN sAML cells. A CRISPR screen in sAML cells revealed BRD4, CBP, and p300 as codependencies with CDK7i. Accordingly, cotreatment with SY-5609 and the bromodomain and extra-terminal protein inhibitor (BETi) OTX015 or pelabresib or the CBP/p300 inhibitor GNE-049 was synergistically lethal in MPN-sAML cells (including those exhibiting TP53 loss). Finally, in the HEL-Luc/GFP xenograft model, compared with each agent alone, cotreatment with SY-5609 and OTX015 reduced sAML burden and improved survival without host toxicity. These findings demonstrate promising preclinical activity of CDK7i-based combinations with BETi or CBP/p300 inhibitor against advanced MPNs, including post-MPN sAML.
Preclinical efficacy of CDK7 inhibitor-based combinations against myeloproliferative neoplasms transformed to AML.
CDK7抑制剂联合疗法对转化为AML的骨髓增生性肿瘤的临床前疗效
阅读:27
作者:Fiskus Warren, Mill Christopher P, Bose Prithviraj, Masarova Lucia, Pemmaraju Naveen, Dunbar Andrew, Birdwell Christine E, Davis John A, Das Kaberi, Hou Hanxi, Manshouri Taghi, Jain Antrix, Malovannaya Anna, Philip Kevin, Alhamadani Noor, Matthews Alicia, Lin Katie, Flores Lauren B, Loghavi Sanam, DiNardo Courtney, Su Xiaoping, Rampal Raajit K, Bhalla Kapil N
| 期刊: | Blood | 影响因子: | 23.100 |
| 时间: | 2025 | 起止号: | 2025 Feb 6; 145(6):612-624 |
| doi: | 10.1182/blood.2024026388 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
