Dermonecrosis resulting from Loxosceles spider envenomation, primarily driven by the enzyme sphingomyelinase D (SMase D), is characterized by severe inflammation and nonhealing wounds. SMases can be classified as Class I or II based on their structural characteristics. Class I exhibits greater dermonecrotic activity than Class II; however, the intracellular mechanisms responsible for this difference remain poorly understood. The differential transcriptomics analysis of human keratinocytes treated with each toxin revealed that Class I primarily activates pathways associated with proteolytic activity and apoptosis. In contrast, Class II uniquely upregulates key genes, including PIM-1, MCL-1, PAI-1, p21, and c-FOS, which support cell survival and inhibit apoptosis. These pathways also facilitate tissue repair and keratinocyte proliferation during wound healing, particularly through signaling mechanisms involving Substance P and VEGF-A. RT-qPCR confirmed these findings, with protein level evaluations indicating the sustained upregulation of VEGF-A exclusively in keratinocytes treated with Class II. We identified Substance P and VEGF-A as potential therapeutic targets for managing cutaneous loxoscelism, providing valuable insights into the cellular mechanisms underlying the distinct toxic effects of the two SMase D isoforms. By elucidating these pathways, this study enhances our understanding of loxoscelism's pathophysiology and highlights strategies for therapeutic intervention in dermonecrotic injuries caused by spider venom.
Differential Cellular Responses to Class I and II Sphingomyelinase D: Unraveling the Mechanisms of Loxosceles Venom-Induced Dermonecrosis and Potential Therapeutic Targets.
细胞对 I 类和 II 类鞘磷脂酶 D 的不同反应:揭示隐蛛毒液诱导的皮肤坏死的机制和潜在的治疗靶点
阅读:5
作者:Pinto Bruna Fernandes, Lopes Priscila Hess, Trufen Carlos Eduardo Madureira, Ching Ching Ana Tung, Junqueira de Azevedo Inácio de Loyola M, Nishiyama-Jr Milton Yutaka, de Souza Marcelo Medina, Pohl Paula C, Tambourgi Denise V
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 26; 26(7):3012 |
| doi: | 10.3390/ijms26073012 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
