The precise molecular mechanisms through which neutrophils regulate macrophages in the progression and resolution of acute inflammation remain poorly understood. Here, we present new findings on the role of Dicer in regulating macrophage phenotypic transitions essential for proper inflammatory progression and resolution, influenced by neutrophils. Using a zymosan A (Zym A)-induced self-limited mouse peritonitis model, we observed that Dicer expression in macrophages was significantly reduced by neutrophil-derived IFN-γ during the progression phase, but gradually returned to normal levels during the resolution phase following the engulfment of apoptotic neutrophils. Our study on macrophage-specific Dicer1-depletion (Dicer1-CKO) mice demonstrated that inflammation in these mice was more severe during the progression phase, characterized by increased pro-inflammatory cytokines and enhanced neutrophil trafficking. Additionally, resolution was impaired in Dicer1-CKO mice, leading to the accumulation of uncleared apoptotic neutrophils. Specifically, the absence of Dicer in macrophages resulted in M1 polarization and heightened bactericidal activity, facilitating the progression of acute inflammation. Conversely, inducing Dicer expression promoted macrophage transition to M2 polarization, enhancing apoptotic cell clearance and expediting the resolution of inflammation. Our findings suggest that Dicer plays a central role in regulating the progression and resolution of acute inflammation, with implications for the treatment of inflammatory diseases.
Neutrophil-modulated Dicer expression in macrophages influences inflammation resolution.
中性粒细胞调节巨噬细胞中Dicer的表达影响炎症消退
阅读:5
作者:Wang Zhishang, Li Wenhua, Li Jia, Jin Tianrong, Chen Hong, Liang Feihong, Liu Shengran, Jia Jialin, Liu Tingting, Liu Yu, Yu Liming, Xue Xiaodong, Zhao Jikai, Huang Tao, Huang Xinyi, Wang Huishan, Li Yongsheng, Luo Bangwei, Zhang Zhiren
| 期刊: | Cellular and Molecular Life Sciences | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Mar 13; 82(1):114 |
| doi: | 10.1007/s00018-025-05644-6 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
