Inhibition of ATM enhances the immunogenicity of triple-negative breast cancer by promoting MHC-I expression.

抑制 ATM 可促进 MHC-I 表达,从而增强三阴性乳腺癌的免疫原性

阅读:4
作者:Li Jiazhen, Liu Chenying, Qian Xiaolong, Wang Xiaozi, Sun Hui, Wang Lu, Xue Huiqin, Song Yuanming, Liu Jiamei, Zhao Yafang, Jia Yumian, Qin Fengxia, Zhang Tianhua, Guo Xiaojing
The immunotherapy has achieved some efficacy in triple-negative breast cancer (TNBC), but the benefit population is limited, primarily due to an abnormal immune microenvironment. Thus, it is necessary to explore new molecular targets to enhance the immunogenicity of TNBC cells and improve their responsiveness to immunotherapy. We found that a key component of the DNA repair system, Ataxia telangiectasia mutated (ATM), may function as an immune response inhibitor. In this study, the inverse correlation between ATM and CD8(+) T cells and tumor-infiltrating lymphocytes (TILs) was confirmed by immunochemical staining of 191 TNBC specimens. Subsequently, inhibition of ATM increased the expression of major histocompatibility complex I (MHC-I) and enhanced the infiltration and cytotoxic activity of CD8(+) T cells by Western blot and flow cytometry analysis. In addition, we further confirmed that the MHC-I upregulation induced by ATM inhibition depends on the activation of the c-Jun/TNF-α/p-STAT1 pathway. Animal studies have shown that ATM deficiency delays tumor growth and sensitizes tumors to PD-1 blockade and radiotherapy. This study reveals a new mechanism by which ATM negatively regulates MHC-I by inhibiting the c-Jun/TNF-α/p-STAT1 pathway in TNBC, and shows an important role in mediating CD8(+) T cells infiltration and regulating the "heat" of the immune microenvironment. The combination of ATM inhibitors with radiotherapy and Immune-checkpoint blockade (ICB) therapies may be a new strategy for TNBC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。