Potential for flexible lactate shuttling between astrocytes and neurons to mitigate against diving-induced hypoxia.

星形胶质细胞和神经元之间灵活的乳酸穿梭可能有助于减轻潜水引起的缺氧

阅读:11
作者:Ciccone Chiara, Dötterer Sari Elena, Vold Jensen Sigrid, Geßner Cornelia, West Alexander C, Wood Shona H, Hazlerigg David G, Folkow Lars P
For most non-diving mammals, lack of O(2) (hypoxia) has detrimental effects on brain function. Seals, however, display a series of systemic, cellular, and molecular adaptations that enable them to tolerate repeated episodes of severe hypoxia. One as yet unresolved question is whether seal neurons in part employ anaerobic metabolism during diving: the "reverse astrocyte-neuron lactate shuttle" (rANLS) hypothesis postulates that seal neurons, by shuttling lactate to the astrocytes, may be relieved (1) from the lactate burden and (2) from subsequent ROS-production as lactate is oxidized by astrocytes upon re-oxygenation after the dive. Here, we have investigated this possibility, through histological and functional comparisons of the metabolic characteristics of neocortical neurons and astrocytes from the deep-diving hooded seal (Cystophora cristata), using mice (Mus musculus) as a non-diving control. We found that seal astrocytes have higher mitochondrial density and larger mitochondria than seal neurons, and that seal neurons have an atypical and significantly higher representation of the monocarboxylate lactate exporter MCT4 compared to mouse neurons. Also, measurements of mitochondrial O(2) consumption suggest that the aerobic capacity of primary seal astrocytes is at least equal to that of primary seal neurons. Transcriptomics data from seals vs. mice suggest that specific adaptations to the electron transport system in seals may contribute to enhance hypoxia tolerance. These observations are consistent with the rANLS hypothesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。