Tie2 activator 4E2 ameliorates diabetic nephropathy and synergizes with dapagliflozin in a mouse model.

Tie2 激活剂 4E2 可改善糖尿病肾病,并在小鼠模型中与达格列净产生协同作用

阅读:5
作者:Jeong Da Som, Ko Soo Min, Lee Ji-Young, Han Hyo-Jeong, Lee Yerin, Lee Weon Sup, Lee Eun-Ah, Son Woo-Chan, Shin Jinho
Diabetic nephropathy (DN), a primary cause of end-stage renal disease, stems from hyperglycemia-induced vascular dysfunction and aberrant angiogenesis. Sodium-glucose cotransporter 2 inhibitors, such as dapagliflozin, improve glycemic control and provide renal protection yet fall short of fully halting DN progression. This study explores 4E2, a Tie2 receptor activator that mimics angiopoietin-1 to stabilize the vascular endothelium, as a novel DN therapy-both independently and in combination with dapagliflozin. In a streptozotocin (STZ)-induced DN mouse model (DBA/2J strain), male mice were treated with weekly intravenous 4E2, daily oral dapagliflozin, or a combination of both for 4 weeks following STZ administration. Dapagliflozin primarily reduced fasting blood glucose with modest renoprotective effects, whereas 4E2 significantly lowered kidney weight, blood urea nitrogen, and urinary albumin while elevating serum albumin, indicating greater renal protection. Histological analysis showed that 4E2 more effectively attenuated glomerular hypertrophy and lesions compared to dapagliflozin. Immunohistochemistry revealed that 4E2 markedly increased VE-cadherin and CD31 expression while decreasing PDGFR-β, reflecting enhanced endothelial stability and reduced vascular remodeling through Tie2-mediated mechanisms. Combination therapy synergistically enhanced these outcomes, achieving superior reductions in glucose levels, glomerular damage, and vascular pathology compared to either treatment alone. In contrast to anti-VEGF therapies, which can worsen proteinuria, 4E2-mediated Tie2 activation normalizes vascular stability without disrupting physiological angiogenesis, providing a safer therapeutic option. These findings establish 4E2 as a promising treatment for DN, especially when combined with dapagliflozin, by leveraging Tie2-driven stabilization and synergistic benefits to meet this critical unmet need.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。