Luteolin Relieves Metabolic Dysfunction-Associated Fatty Liver Disease Caused by a High-Fat Diet in Rats Through Modulating the AdipoR1/AMPK/PPARγ Signaling Pathway.

木犀草素通过调节 AdipoR1/AMPK/PPARγ 信号通路缓解高脂饮食引起的大鼠代谢功能障碍相关脂肪肝疾病

阅读:4
作者:Taweesap Pongsakorn, Potue Prapassorn, Khamseekaew Juthamas, Iampanichakul Metee, Jan-O Banyaphon, Pakdeechote Poungrat, Maneesai Putcharawipa
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a significant global public health issue. Luteolin possesses several beneficial biological properties, including antioxidation and anti-inflammation. This study investigated luteolin's effect and potential mechanisms on MAFLD in high-fat diet (HFD)-fed rats. Rats were administered an HFD supplemented with fructose for 12 weeks to induce MAFLD. After that, the HFD-fed rats were given either luteolin (50 or 100 mg/kg/day) or metformin (100 mg/kg/day) for 4 weeks. Luteolin improved metabolic parameters induced by the HFD, since it decreased body weight, blood pressure, fasting blood glucose, serum insulin, free fatty acids, cholesterol, and triglyceride levels (p < 0.05). Luteolin reduced hepatic injury and inflammatory markers in HFD-fed rats (p < 0.05). Additionally, HFD-fed rats treated with luteolin showed reduced malondialdehyde and raised catalase activity in plasma (p < 0.05). Luteolin attenuated hepatic steatosis compared to the untreated rats (p < 0.05). Luteolin also increased plasma adiponectin levels accompanied by upregulation of adiponectin receptor 1 (AdipoR1), AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor γ (PPAR-γ) protein expression in liver (p < 0.05). These findings revealed that luteolin ameliorated HFD-induced MAFLD in rats, possibly by reducing metabolic alterations and oxidative stress and restoring AdipoR1, AMPK, and PPARγ protein expression in HFD-fed rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。