This work reported the neuronal protection of low-dose lipopolysaccharide (LD-LPS) after spinal cord injury (SCI). SCI rat model was constructed, after adenovirus-mediated ALKBH5 vectors and shRNA transfection and LD-LPS pre-treatment. Hematoxylin and eosin, Nissl, TUNEL staining of spinal cord tissues were adopted to monitor pathological changes, neuronal survival and apoptosis. PC12 cells transfected with ALKBH5 vectors and ALKBH5/Nrf2 siRNAs were treated by LD-LPS, followed by oxygen and glucose deprivation/reoxygenation (OGD/R). Cell viability and apoptosis were assessed by cell counting kit-8 and TUNEL assays. Neuronal oxidative stress was evaluated by appraising MDA and SOD levels. ALKBH5 and Nrf2 expression was monitored through immunohistochemistry, Western blot and qRT-PCR. Methylated RNA immunoprecipitation assay and Dot-blot experiment were for Nrf2 m6A modification detection, while RNA pull-down assay was for the binding validation between ALKBH5 and Nrf2. In rats with SCI, LD-LPS relieved spinal cord tissue damage and neuronal apoptosis; enhanced neuronal survival; decreased MDA content; elevated SOD activity; down-regulated ALKBH5; up-regulated Nrf2; and facilitated Nrf2 m6A methylation. These above influences by LD-LPS were eliminated by ALKBH5. Similar results were found in the OGD/R-induced PC12 cells after LD-LPS treatment. ALKBH5 significantly blocked Nrf2 m6A methylation, and pulled down Nrf2 protein. In the OGD/R-induced PC12 cells, the repressed oxidative stress and apoptosis by ALKBH5 silencing was abrogated by Nrf2 knockdown. LD-LPS might alleviate neuronal apoptosis and oxidative stress after SCI by facilitating Nrf2 m6A methylation via reducing ALKBH5. It was proposed to be a novel strategy for SCI treatment.
Low-Dose Lipopolysaccharide Alleviates Neuronal Apoptosis and Oxidative Stress in Rats with Spinal Cord Injury by Inducing Nrf2 m6A Methylation Modification via Suppressing ALKBH5.
低剂量脂多糖通过抑制ALKBH5诱导Nrf2 m6A甲基化修饰,减轻脊髓损伤大鼠的神经元凋亡和氧化应激
阅读:19
作者:Huang Kun, Zhao Yayu, Lei Wen, Ge Hongran, Zou Tiannan, Li Weichao
| 期刊: | Neurochemical Research | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 7; 50(3):188 |
| doi: | 10.1007/s11064-025-04442-7 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
