Intervertebral disc degeneration (IDD) is one of the leading causes of chronic low back pain and functional impairment, severely affecting the quality of life of patients. In recent years, circular RNA (circRNA), has gained attention for its critical role in cellular function regulation, especially its potential therapeutic effects in IDD. This study aims to elucidate the function of circETS1 in nucleus pulposus cells (NPCs) and develop a novel targeted therapeutic strategy. CircETS1, which was abnormally highly expressed in degenerated nucleus pulposus tissue, was identified through circRNA sequencing (circRNA-seq). The circular nature of circETS1 was confirmed by Sanger sequencing, RNase R digestion, and fluorescence in situ hybridization (FISH). Primary human NPCs were cultured, and the effects of regulating circETS1 on cell proliferation, apoptosis, and extracellular matrix metabolism were studied using reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and immunofluorescence. Polylactic-co-glycolic acid (PLGA) microspheres (MS) loaded with si-circETS1 were prepared, and their therapeutic effects were evaluated. PLGA MS loaded with si-circETS1 effectively delivered si-circETS1 to nucleus pulposus tissue in both in vitro and in vivo experiments, significantly downregulating circETS1 expression, reducing inflammation, promoting extracellular matrix synthesis and repair, and ultimately delaying the progression of IDD. Consequently, PLGA MS loaded with si-circETS1 present an innovative and promising therapeutic strategy for IDD, demonstrating strong potential for clinical application.
PLGA microspheres loaded with si-circETS1 as a therapeutic strategy to delay intervertebral disc degeneration.
以si-circETS1负载的PLGA微球作为延缓椎间盘退变的治疗策略
阅读:5
作者:Nie Wenlei, Zhang Rong, Xie Pingfeng, Yang Min, Wu Jiaming
| 期刊: | Cytotechnology | 影响因子: | 1.700 |
| 时间: | 2025 | 起止号: | 2025 Jun;77(3):99 |
| doi: | 10.1007/s10616-025-00768-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
