Repeated Administration of Baclofen Modulates TRPV-1 Channel Expression by PKC Pathway in Dorsal Root Ganglia of Spinal Cord in a Morphine Tolerance Model of Rats

在吗啡耐受大鼠模型中,重复服用巴氯芬通过 PKC 通路调节脊髓背根神经节中 TRPV-1 通道的表达

阅读:7
作者:Shima Mehrabadi, Seyed Morteza Karimiyan, Ghorbangol Ashabi, Khadijeh Moradbeygi, Marjan Hoseini

Background

Tolerance and dependence to anti-nociceptive effect of morphine restricted its use. Nowadays co-administration of morphine and other drugs suggests diminishing this tolerance. Baclofen is one of the drugs that may be beneficial in the attenuation of tolerance to morphine. Studies have shown that changes in transient receptor potential vanilloid type 1 (TRPV-1) expression during administration of morphine have a pivotal role in developing morphine tolerance. Therefore, the effect of baclofen on TRPV-1 expression during chronic administration of morphine was investigated in this study.

Conclusion

Baclofen can enhance anti-nociceptive effect of morphine by modulating TRPV-1 channel and PKC activity.

Methods

A total of 48 rats were divided into four groups of control, morphine single injection, morphine tolerance, and morphine tolerance + baclofen. To induce morphine tolerance in rats, animals received 10 mg/kg of i.p. morphine sulfate once a day for 10 days. In the treatment group, baclofen (0.5 mg/kg) was injected for 10 days, before morphine injection. Finally, to evaluate baclofen treatment on morphine analgesia and hyperalgesia, thermal hyperalgesia and formalin test were used. TRPV-1 and protein kinase C (PKC) expression and protein production in DRG of spinal cord were then evaluated by real-time PCR and Western blot.

Results

In baclofen treatment group, thermal hyperalgesia and formalin test improved in comparison with morphine tolerance group. In morphine tolerance group, both TRPV-1/PKC gene expression and protein levels increased in comparison with the control group. However, following the baclofen treatment, the TRPV-1 and PKC levels decreased.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。