Human chorionic gonadotropin (hCG) might affect endometrial receptivity, exerting integral roles in embryo implantation. This study explored the action of hCG in endometrial receptivity via the miR-126-3p/PIK3R2/PI3K/Akt/eNOS axis. The embryo implantation dysfunction (EID) mouse models were established by administrating mifepristone and human endometrial epithelial cells (EECs) were used for in vivo experiments, both followed by hCG treatment. Expression level of CD105 and protein levels of cadherin CD144 and CD146 in mice were determined by immunohistochemistry and Western blot. The levels of miR-126-3p and PIK3R2 mRNA and PIK3R2, p-PI3K p85 α, PI3K p110 α, p-Akt, Akt, p-eNOS, and eNOS protein levels were measured. Cell proliferation was evaluated by CCK-8 and EdU assays. The binding sites of miR-126-3p and PIK3R2 were predicted and verified. hCG-treated EECs were further transfected with miR-126-inhibitor for functional rescue experiments. hCG ameliorated endometrial receptivity in EID mice. Moreover, hCG promoted miR-126-3p and suppressed PIK3R2 in EID mice and EECs. miR-126-3p targeted PIK3R2. EEC proliferation was enhanced after hCG treatment but inhibited by miR-126-3p downregulation. Both in vivo and in vitro experiments validated that hCG activated the PI3K/Akt/eNOS pathway through the miR-126-3p/PIK3R2 axis. Collectively, hCG improves endometrial receptivity by activating the PI3K/Akt/eNOS pathway via regulating miR-126-3p/PIK3R2.
Mechanism of human chorionic gonadotropin in endometrial receptivity via the miR-126-3p/PI3K/Akt/eNOS axis.
人绒毛膜促性腺激素通过 miR-126-3p/PI3K/Akt/eNOS 轴影响子宫内膜容受性的机制
阅读:4
作者:Wang Wei, Ge Liang, Zhang Li-Li, Wang Li-Rong, Lu Yong-Yan, Gou Li, Gou Rui-Qiang, Xu Tong-Yu, Ma Xiao-Ling, Zhang Xue-Hong
| 期刊: | Kaohsiung Journal of Medical Sciences | 影响因子: | 3.100 |
| 时间: | 2023 | 起止号: | 2023 May;39(5):468-477 |
| doi: | 10.1002/kjm2.12672 | 种属: | Human |
| 研究方向: | 信号转导 | 信号通路: | PI3K/Akt |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
