The trapping of pathogenic ligands can potentially be used to prevent signal transduction mediated by catabolic factor expression in osteoarthritis (OA). Although vaspin is known to function as a pathogenic ligand and represents a novel adipokine, little is known about its function and the impact of its nebulization-based administration in OA. Here we provide a report on the function of vaspin in articular chondrocytes and OA model mice. RNA sequencing analysis and ingenuity pathway analysis demonstrated that vaspin upregulation in chondrocytes triggers OA development-related signaling. Vaspin is upregulated in the injured cartilage of patients with OA and DMM (Destabilization of the Medial Meniscus) mice, and its overexpression induces catabolic factor expression in vitro under OA-mimicked conditions. Col2a1-vaspin Tg (Transgenic) animals showed extensive cartilage degradation, whereas vaspin(-/-) (knockout) mice exhibited decreased OA development. Furthermore, in silico and biochemical analyses showed that vaspin activates the p38 and JNK signaling pathways to regulate AP-1-driven catabolic factor production and cartilage breakdown. Finally, we identified and characterized a vaspin-targeting nanobody, vas nanobody, and showed that intraarticularly injected vas nanobody could effectively block the vaspin-AP-1 axis to treat OA in DMM mice. Together, our results suggest that blockade of the vaspin-AP-1 axis could be an effective therapeutic approach for preventing OA development.
Blockade of the vaspin-AP-1 axis inhibits arthritis development.
阻断血管生成素-AP-1轴可抑制关节炎的发展
阅读:19
作者:Jeon Jimin, Cho Chanmi, Kim Seoyeong, Kim Hyeran, Lee Hyemi, Kim Seok Jung, Park Hwangseo, Yu Ji Hoon, Lee Sangho, Lee Kyu-Sun, Jung Juyeon, Yang Siyoung
| 期刊: | Experimental and Molecular Medicine | 影响因子: | 12.900 |
| 时间: | 2025 | 起止号: | 2025 Mar;57(3):628-636 |
| doi: | 10.1038/s12276-025-01418-z | 研究方向: | 心血管 |
| 疾病类型: | 关节炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
