Apolipoprotein-L1 G1 variant contributes to hydrocephalus but not to atherosclerosis in apolipoprotein-E knock-out mice.

载脂蛋白-L1 G1 变体导致载脂蛋白-E 敲除小鼠出现脑积水,但不会导致动脉粥样硬化

阅读:9
作者:Yoshida Teruhiko, Yang Zhi-Hong, Ashida Shinji, Yu Zu Xi, Shrivastav Shashi, Rojulpote Krishna Vamsi, Bahar Piroz, Nguyen David, Springer Danielle A, Munasinghe Jeeva, Starost Matthew F, Hoffmann Victoria J, Rosenberg Avi Z, Bielekova Bibi, Wen Han, Remaley Alan T, Kopp Jeffrey B
In USA, six million individuals with Sub-Saharan ancestry carry two APOL1 high-risk variants, which increase the risk for kidney diseases. Whether APOL1 high-risk variants increase other diseases under dyslipidemia remains unclear and requires further investigation.We characterized a mouse model to investigate the role of APOL1 in dyslipidemia and cardiovascular diseases. Transgenic mice carrying APOL1 (G0 and G1 variants)on bacterial artificial chromosomes (BAC/APOL1 mice) were crossed with the ApoE knock-out (ApoE-KO) dyslipidemia and atherosclerosis mouse model. The compound transgenic mice were evaluated for the impact of APOL1 on systemic phenotypes. ApoE-KO mice carrying APOL1-G0 and APOL1-G1 did not show differences in the extent of atherosclerotic lesions or aortic calcification, as evaluated by Sudan IV staining and radiographic examination, respectively. However, ~20% of ApoE-KO; BAC/APOL1-G1 mice developed hydrocephalus and required euthanasia. The hydrocephalus was communicating and likely was due to excess cerebrospinal fluid produced by the choroid plexus, where epithelial cells expressed APOL1. Single-nuclear RNA-seq of choroid plexus identified solute transporter upregulation and mTORC2 pathway activation in APOL1-G1-expressing epithelial cells. Further, in the All of Us cohort, we found higher hydrocephalus prevalence among individuals with the APOL1-G1 variant in both recessive and dominant models, supporting the mouse findings. While APOL1-G1 expression in ApoE-KO mice did not worsen cardiovascular disease phenotypes, we uncovered hydrocephalus as a novel APOL1 risk allele-mediated phenotype. These findings extend the spectrum of APOL1-associated pathologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。