Immobilization-associated muscle atrophy and weakness appear to be driven in part by oxidative stress. Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) is a critical redox rheostat that regulates oxidative stress responses, and its deletion is known to accelerate muscle atrophy and weakness during aging (sarcopenia) or denervation. Conversely, pharmacologic activation of NRF2 extends mouse lifespan and attenuates sarcopenia. Similarly, deletion of Kelch-like ECH-associated Protein 1 (Keap1), a negative regulator of NRF2, enhances exercise capacity. The purpose of this study was to determine whether muscle-specific Keap1 deletion is sufficient to prevent muscle atrophy and weakness in mice following 7âdays of hindlimb unloading (HU). To test this hypothesis, control (Ctrl) and tamoxifen-inducible, muscle-specific Keap1 knockout (mKO) mice were subjected to either normal housing (Sham) or HU for 7âdays. Activation of NRF2 in muscle was confirmed by increased mRNA of NRF2 targets thioredoxin 1 (Txn1) and NAD(P)H quinone dehydrogenase 1 (NQO1) in mKO mice. Keap1 deletion had an effect to increase force-generating capacity at baseline. However, muscle masses, cross-sectional area, and ex vivo force were not different between mKO and Ctrl HU mice. In addition, muscle 4-hydroxynonenal-modified proteins and protein carbonyls were unaffected by Keap1 deletion. These data suggest that NRF2 activation improves muscle force production during ambulatory conditions but is not sufficient to prevent muscle atrophy or weakness following 7âdays of HU.
Muscle-specific Keap1 deletion enhances force production but does not prevent inactivity-induced muscle atrophy in mice.
肌肉特异性 Keap1 缺失可增强肌肉力量,但不能阻止小鼠因缺乏运动引起的肌肉萎缩
阅读:5
作者:Miranda Edwin R, Shahtout Justin L, Watanabe Shinya, Milam Norah, Karasawa Takuya, Rout Subhasmita, Atkinson Donald L, Holland William L, Drummond Micah J, Funai Katsuhiko
| 期刊: | FASEB Journal | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Mar 31; 39(6):e70464 |
| doi: | 10.1096/fj.202402810R | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
