An engineering-reinforced extracellular vesicle-integrated hydrogel with an ROS-responsive release pattern mitigates spinal cord injury.

一种具有 ROS 响应释放模式的工程增强型细胞外囊泡整合水凝胶可减轻脊髓损伤

阅读:5
作者:Cao Jian, Zhang Xunqi, Guo Jing, Wu Jiahe, Lin Lingmin, Lin Xurong, Mu Jiafu, Huang Tianchen, Zhu Manning, Ma Lan, Zhou Weihang, Jiang Xinchi, Wang Xuhua, Feng Shiqing, Gu Zhen, Gao Jian-Qing
The local delivery of mesenchymal stem cell-derived extracellular vesicles (EVs) via hydrogel has emerged as an effective approach for spinal cord injury (SCI) treatment. However, achieving on-demand release of EVs from hydrogel to address dynamically changing pathology remains challenging. Here, we used a series of engineering methods to further enhance EVs' efficacy and optimize their release pattern from hydrogel. Specifically, the pro-angiogenic, neurotrophic, and anti-inflammatory effects of EVs were reinforced through three-dimensional culture and dexamethasone (Dxm) encapsulation. Then, the prepared Dxm-loaded 3EVs (3EVs-Dxm) were membrane modified with ortho-dihydroxy groups (-2OH) and formed an EV-integrated hydrogel (3EVs-Dxm-Gel) via the cross-link with phenylboronic acid-modified hyaluronic acid and tannic acid. The phenylboronic acid ester in 3EVs-Dxm-Gel enabled effective immobilization and reactive oxygen species-responsive release of EVs. Topical injection of 3EVs-Dxm-Gel in SCI rats notably mitigated injury severity and promoted functional recovery, which may offer opportunities for EV-based therapeutics in central nervous system injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。