Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease of the intestines with a significant increase in global incidence in recent years. Oxidative stress and inflammation are two hallmarks of UC pathogenesis. Anemoside B4 (AB4), a pentacyclic triterpenoid saponin, exhibits significant antioxidant and anti-inflammatory properties and shows potential for preventing UC. Here, an animal model induced by dextran sodium sulfate (DSS) was used to investigate the effect of AB4 on UC. The results demonstrated that AB4 significantly reduces intestinal oxidative stress and inflammation in UC mice, while also protecting intestinal barrier function. Furthermore, AB4 helps restore intestinal microbial balance primarily by modulating the abundance of Lactobacillus, which enhances the metabolism of short-chain fatty acids and upregulates the production of butyric acid (BA). Pseudogerm-free mice and fecal microbiota transplantation (FMT) demonstrated that AB4 significantly mitigated UC in a gut microbe-dependent manner. Both AB4 and BA markedly activate the aromatic hydrocarbon receptor (AhR). The intestinal organoid results suggest BA may activate the AhR to inhibit ROS production and activation of NLRP3 inflammasome, thereby protecting intestinal integrity. Administration of AhR antagonists abolished the protective effects, thus confirming the involvement of AhR in the underlying mechanism. Overall, these results indicate that AB4 is an effective agent against UC mainly by activating the AhR through gut microbial short-chain fatty acid metabolites to inhibit intestinal oxidative stress and inflammation.
Anemoside B4 alleviates ulcerative colitis by attenuating intestinal oxidative stress and NLRP3 inflammasome via activating aryl hydrocarbon receptor through remodeling the gut microbiome and metabolites.
Anemoside B4 通过重塑肠道微生物群和代谢物,激活芳烃受体,从而减轻肠道氧化应激和 NLRP3 炎症小体,进而缓解溃疡性结肠炎
阅读:10
作者:Wu Hao, Li Yao-Lei, Wang Yu, Wang Yu-Ge, Hong Jia-Hui, Pang Mi-Mi, Liu Pan-Miao, Yang Jian-Jun
| 期刊: | Redox Biology | 影响因子: | 11.900 |
| 时间: | 2025 | 起止号: | 2025 Sep;85:103746 |
| doi: | 10.1016/j.redox.2025.103746 | 研究方向: | 代谢 |
| 疾病类型: | 肠炎 | 信号通路: | 炎性小体 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
