Pioneering new enhancers by GATA3: role of facilitating transcription factors and chromatin remodeling.

GATA3 开创了新的增强子:促进转录因子和染色质重塑的作用

阅读:5
作者:Orlando Krystal A, Grimm Sara A, Wade Paul A
Pioneer transcription factors (PTFs) bind to inaccessible chromatin and recruit collaborating transcription factors to promote chromatin accessibility. However, mechanisms driving PTFs to specify collaborating transcription factor recruitment and chromatin remodeling remain unclear. Here, we utilize inducible expression of a PTF, GATA3, in a basal breast cancer cell line (SUM159PT) to mechanistically address the collaborating transcription factor requirements and the local chromatin architecture delineating GATA3-depenent chromatin accessibility and enhancer formation (productive sites) versus GATA3-bound inaccessible chromatin (unproductive sites). Transcription factor footprinting in productive sites illustrated enrichment of GATA3 with AP-1 transcription factor. Together, GATA3 and AP-1 colocalize at primed enhancers with p300 and BRG1 where nucleosome positioning is influenced by GATA3 binding. Although inhibition of AP-1 binding affects a small subset of productive sites, we demonstrate that inhibition of SWI/SNF ATPases results in dramatic loss of GATA3-dependent chromatin accessibility, binding, and alterations in local chromatin architecture. We conclude that GATA3-dependent gains in chromatin accessibility require chromatin remodeling and that accessibility at some loci is facilitated by collaborating transcription factors like AP-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。