Neuroplasticity After Hypoxic-Ischemic Brain Injury in Neonatal Pigs Based on Time-Dependent Behavior of (1)H-MRS-Tau Protein and Synaptic Associated Proteins and Synaptic Structure Analysis.

基于(1)H-MRS-Tau蛋白和突触相关蛋白的时间依赖性行为和突触结构分析,研究新生猪缺氧缺血性脑损伤后的神经可塑性

阅读:15
作者:Zhao Sijia, Zheng Yang
This study investigated the effects of hypoxic-ischemic (HI) injury on neonatal neuroplasticity using the following approaches: Magnetic Resonance Spectroscopy ((1)H-MRS) imaging to analyze dynamic changes in tau protein levels, immunofluorescence staining to evaluate synaptophysin (SYP), neurocan (Neu), and tau protein, and utilizing transmission electron microscopy (TEM) to examine synaptic ultrastructure at multiple time points. A total of 59 healthy neonatal pigs were included, with 10 in the control group and 43 in the HI model group. The results demonstrated that SYP immunostaining intensity peaked at 6-12 h after HI before declining. Neu expression exhibited an initial decrease, followed by a transient increase and subsequent reduction, reaching its lowest level at 6-12 h after HI. Tau protein levels increased initially after HI, peaked at 24-48 h after HI, and subsequently decreased. SYP was negatively correlated with Neu with a correlation coefficient of -0.877. SYP was not correlated with Tau, neither was Neu with Tau. Compared with the control group, the number of synaptic vesicles decreased, and Post-Synaptic Density (PSD) thickness increased 6-12 h after HI. At 12-24 h after HI, the number of synaptic vesicles increased, and PSD thickness slightly decreased. At 24-48 h after HI, the vesicle number decreased, PSD became thinner, interrupting continuity, mitochondria swelled, and mitochondrial cristae blurred and disappeared. The findings suggest that the expression of Tau, SYP, and Neu is linked to alterations in synaptic and myelin structures, reflecting varying aspects of neural plasticity following HI injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。