In Alzheimer's disease (AD), oxidative stress is present early and contributes to disease pathogenesis. We previously reported that in Tg19959 transgenic AD mice, partial deficiency of the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) exacerbated amyloid pathology. We therefore asked whether MnSOD overexpression would prove beneficial against AD pathogenesis, by studying the offspring of Tg19959 mice crossed with MnSOD-overexpressing mice. At 4 mo of age, there was a 2- to 3-fold increase in MnSOD protein levels in Tg19959-MnSOD mice compared to Tg19959 littermates. Tg19959-MnSOD mice also had a 50% increase in catalase protein levels, a 50% decrease in levels of oxidized protein, and a 33% reduction in cortical plaque burden compared to Tg19959 littermates. Spatial memory was impaired and synaptophysin levels were decreased in Tg19959 mice compared to wild-type littermates, but memory and synaptophysin levels were restored to wild-type levels in Tg19959-MnSOD littermates. These benefits occurred without changes in sodium dodecyl sulfate-soluble or formic acid-soluble Abeta pools or Abeta oligomers in Tg19959-MnSOD mice compared to Tg19959 littermates. These data demonstrate that facilitation of the mitochondrial antioxidant response improves resistance to Abeta, slows plaque formation or increases plaque degradation, and markedly attenuates the phenotype in a transgenic AD mouse model.
Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer's disease.
在阿尔茨海默病转基因小鼠模型中,锰超氧化物歧化酶过表达可减少氧化应激、淀粉样蛋白沉积和记忆缺陷
阅读:13
作者:Dumont Magali, Wille Elizabeth, Stack Cliona, Calingasan Noel Y, Beal M Flint, Lin Michael T
| 期刊: | FASEB Journal | 影响因子: | 4.200 |
| 时间: | 2009 | 起止号: | 2009 Aug;23(8):2459-66 |
| doi: | 10.1096/fj.09-132928 | 种属: | Mouse |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
