Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons, linked to aggregation of alpha-synuclein (αSYN) into Lewy bodies. Current treatments are symptomatic and do not halt or reverse the neurodegeneration. Immunotherapy targeting aggregated αSYN shows potential, but therapeutic efficacy is limited by poor brain penetration of antibodies. We developed a bispecific antibody, RmAb38E2-scFv8D3, based on αSYN oligomer selective RmAb38E2 fused to a transferrin receptor (TfR)-binding domain to enhance brain delivery. Both RmAb38E2 and RmAb38E2-scFv8D3 showed higher affinity for αSYN oligomers than for monomers or fibrils. In vivo, RmAb38E2-scFv8D3 exhibited higher brain and lower blood concentrations compared to RmAb38E2, suggesting a better brain uptake and reduced peripheral exposure for the bispecific antibody. Treatment over five days of 3-4 months old transgenic L61 mice, which overexpress human αSYN, with three doses of RmAb38E2-scFv8D3 reduced brain αSYN oligomer levels and increased microglial activation, as indicated by elevated soluble TREM2 levels. Treatment with the monospecific RmAb38E2, however, showed no significant effect compared to PBS. This study demonstrates that TfR-mediated delivery enhances the therapeutic potential of αSYN-targeted immunotherapy by resulting in a higher concentration and a more uniform distribution of antibodies in the brain. The use of bispecific antibodies offers a promising strategy to improve the efficacy of antibody therapies in PD and other α-synucleinopathies.
A brain-penetrant bispecific antibody lowers oligomeric alpha-synuclein and activates microglia in a mouse model of alpha-synuclein pathology.
在α-突触核蛋白病理小鼠模型中,一种可穿透血脑屏障的双特异性抗体可降低寡聚α-突触核蛋白水平并激活小胶质细胞
阅读:16
作者:Sehlin Dag, Roshanbin Sahar, Zachrisson Olof, Ingelsson Martin, Syvänen Stina
| 期刊: | Neurotherapeutics | 影响因子: | 6.900 |
| 时间: | 2025 | 起止号: | 2025 Mar;22(2):e00510 |
| doi: | 10.1016/j.neurot.2024.e00510 | 种属: | Mouse |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
