Modified Huanjingjian Prevents Chemotherapy-Induced Alopecia by Inhibiting Genomic DNA Methylation of the Wnt Signaling Pathway in Mice.

改良型环精健通过抑制小鼠 Wnt 信号通路基因组 DNA 甲基化来预防化疗引起的脱发

阅读:4
作者:Liu Xin, Du Ting, Xi Ruofan, Cheng Linyan, Wang Yi, Lu Hanzhi, Guo Dongjie, Zhu Jianyong, Liu Te, Li Fulun
AIM: Cyclophosphamide (CTX), a cornerstone in breast cancer combination chemotherapy, frequently induces adverse effects including myelosuppression, gastrointestinal disturbances, hepatic impairment, and alopecia. Chemotherapy-induced alopecia severely impacts patients' quality of life and psychological well-being. Modified Huanjingjian (MHJJ), a traditional Chinese herbal formula, demonstrates clinical efficacy in alleviating chemotherapy-related side effects, yet its mechanisms against CTX-induced alopecia remain uncharacterized. And our main aim was to explore the efficacy and the mechanism of MHJJ in mice. METHODS: UPLC-QE-Orbitrap-MS characterized MHJJ's chemical composition. A CTX-induced alopecia murine model was established. Systemic toxicity was evaluated through body weight monitoring, automated biochemical analysis (ALT/AST levels), and hematological profiling (WBC/PLT counts). Hair follicle histopathology was assessed via H&E staining. IHC and IF staining quantified proliferation markers and hair follicle stem cell (HFSC) biomarkers. Reduced representation bisulfite sequencing (RRBS) was used to map DNA methylation patterns. Wnt pathway dynamics were analyzed through qRT-PCR and IF staining. RESULTS: We identified 110 bioactive compounds in MHJJ. MHJJ intervention attenuated alopecia severity, restored follicular architecture, and increased follicular density compared to CTX monotherapy (p<0.05). HFSC proliferation markers (Ki67/CD34) showed significant upregulation, while apoptosis markers (Caspase-3) were suppressed. RRBS revealed MHJJ-mediated hypomethylation in differentially methylated regions, with gene body methylation constituting 60% of total methylation changes. Methylation-modulated genes predominantly localized to Wnt signaling pathways: MHJJ enhanced Wnt3/Wnt10a expression while suppressing Cer1/Axin1. Corresponding methylation reductions at promoter and gene body regions were confirmed at mRNA and protein levels. CONCLUSION: MHJJ mitigates CTX-induced alopecia through epigenetic regulation of HFSCs, specifically via DNA hypomethylation-mediated activation of Wnt3/Wnt10a and suppression of Cer1/Axin1. This mechanism promotes follicular regeneration by restoring Wnt signaling homeostasis, positioning MHJJ as a promising adjuvant for chemotherapy-induced alopecia management.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。