Endocytic uptake and lysosomal localization are suggested to be the key mechanisms underlying the toxicity of metal oxide nanoparticles (MONPs), with dissolution in the acidic milieu driving the response. In this study, we aimed to investigate if MONPs of varying solubility are similarly sequestered intracellularly, including in lysosomes and the role of the acidic lysosomal milieu on toxicity induced by copper oxide (CuO) nanoparticles (NPs), nickel oxide (NiO) NPs, aluminum oxide (Al(2)O(3)) NPs, and titanium dioxide (TiO(2)) NPs of varying solubility in FE1 lung epithelial cells. Mitsui-7 multi-walled carbon nanotubes (MWCNTs) served as contrasts against particles. Enhanced darkfield hyperspectral imaging (EDF-HSI) with fluorescence microscopy was used to determine their potential association with lysosomes. The v-ATPase inhibitor Bafilomycin A1 (BaFA1) was used to assess the role of lysosomal acidification on toxicity. The results showed co-localization of all MONPs with lysosomes, with insoluble TiO(2) NPs showing the greatest co-localization. However, only acute toxicity induced by soluble CuO NPs was affected by the presence of BaFA1, showing a 14% improvement in relative survival. In addition, all MONPs were found to be associated with large actin aggregates; however, treatment with insoluble TiO(2) NPs, but not soluble CuO NPs, impaired the organization of F-actin and α-tubulin. These results indicate that MONPs are sequestered similarly intracellularly; however, the nature or magnitude of their toxicity is not similarly impacted by it. Future studies involving a broader variety of NPs are needed to fully understand the role of differential sequestration of NPs on cellular toxicity.
Acute Toxicity of Metal Oxide Nanoparticles-Role of Intracellular Localization In Vitro in Lung Epithelial Cells.
金属氧化物纳米颗粒的急性毒性——细胞内定位在肺上皮细胞体外的作用
阅读:12
作者:Boyadzhiev Andrey, Halappanavar Sabina
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 30; 26(17):8451 |
| doi: | 10.3390/ijms26178451 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
