Heterogeneity associated with traumatic brain injury (TBI) outcomes necessitates validated controls to differentiate pathophysiological events from experimental methodology. While craniectomies are commonly used in TBI research, inadvertent dura disruption can result in structural deficits, impacting cellular function and neurobehavioral outcomes. Thus, there is a critical need to evaluate the effect of craniectomy on neurological outcomes to develop robust experimental controls and improve pre-clinical TBI research. In this study, craniectomy mice undergoing surgical and anesthetic intervention were assessed against naïve mice for neurological deficits and pathophysiological dysfunction. T2-weighted magnetic resonance imaging confirmed that no lesions or cavities were observed postcraniectomy. However, the cranial defect induced midline shifting over time, which might contribute to poorer behavioral outcomes in the novel object recognition assessment. Immunohistochemical analysis demonstrated an increase in GFAP and Iba1, indicating craniectomy elicited an inflammatory response. Indeed, neuroinflammation led to an increase in neuronal cell death, as measured by increases in α-II-spectrin breakdown products. However, craniectomy mice also presented with decreases in LC3BII and SQSTM1 expression, indicating an inhibition of autophagy. Last, craniectomy contributed to the altered expression of several tight junction proteins, including occludin and claudin-1/5, suggesting the blood-brain barrier was perturbed. Overall, the deficits associated with craniectomy preclude its use as an adequate sole control for TBI research, as craniectomy limits translational insights into the neurological changes observed in TBI. Additionally, these results support the need for the use of closed-head injury models where uninjured control mice do not show significant confounding minor injury patterns.
Structural Defects Associated with Craniectomy Induce Neuroinflammation and Blood-Brain Barrier Permeability.
颅骨切除术相关的结构缺陷可诱发神经炎症和血脑屏障通透性增加
阅读:6
作者:Tarudji Aria W, McDonald Brandon Z, Curtis Evan, Gee Connor, Kievit Forrest M
| 期刊: | Neurotrauma Reports | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 26; 6(1):586-599 |
| doi: | 10.1177/08977151251362176 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
