Apoptotic cell-derived extracellular vesicles-MTA1 confer radioresistance in cervical cancer by inducing cellular dormancy.

凋亡细胞衍生的细胞外囊泡-MTA1通过诱导细胞休眠赋予宫颈癌细胞放射抗性

阅读:6
作者:Deng Yuan-Run, Wu Qiao-Zhi, Zhang Wan, Jiang Hui-Ping, Xu Cai-Qiu, Chen Shao-Cheng, Fan Jing, Guo Sui-Qun, Chen Xiao-Jing
BACKGROUND: Radioresistance presents a major challenge in the treatment of cervical cancer (CC). Apoptotic tumor cells can create an "onco-regenerative niche," contributing to radioresistance. However, the intercellular signaling mechanisms mediating the transfer of radioresistance from apoptotic to surviving cancer cells remain unclear. METHODS: The role of apoptotic tumor cell-derived extracellular vesicles (apoEVs) in mediating radioresistance was investigated through integrated bioinformatics and experimental approaches. The GSE236738 dataset was analyzed to identify potential regulators, with subsequent validation of apoEV-MTA1 function using in vitro and in vivo models. Mechanistic studies focused on caspase-3 activation, p-STAT1 signaling pathway, and dormancy-associated protein networks. Furthermore, therapeutic strategies targeting MTA1 and its downstream signaling were evaluated for radiosensitization potential. RESULTS: MTA1 was identified as a critical factor enriched in and transferred by apoEVs from apoptotic tumor cells to neighboring CC cells. Caspase-3 activation facilitated the nuclear export and encapsulation of MTA1 in apoEVs. Transferred MTA1 retained transcriptional activity, activated the p-STAT1 signaling pathway, and induced cellular dormancy via NR2F1, a key dormancy regulator, resulting in increased radioresistance. Knockdown of MTA1 in apoEVs or inhibition of p-STAT1 in recipient cells enhanced radiosensitivity. Furthermore, apoEV-MTA1 promoted tumor radioresistance and reduced survival rates in irradiated cervical cancer mouse model. CONCLUSIONS: This study demonstrates that apoEV-MTA1 confers radioresistance in CC by promoting cellular dormancy via the p-STAT1/NR2F1 signaling axis. Targeting this pathway could improve radiosensitivity and provide a promising therapeutic strategy for CC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。