The phenomenon of inflammaging, characterized by an increase in low-grade chronic inflammation, is closely associated with diseases related to liver dysfunction. This study investigated daily plasma exchange between 5-week-old and 24-month-old Sprague Dawley rats for 30 days, focusing on protein secondary structures, NLRP3 inflammasome, and necroptosis. Conformation changes in protein secondary structures were identified by infrared spectroscopy-based pattern recognition analysis. Liver biopsies with histochemical and immunohistochemical staining were used to assess molecules associated with inflammation, necroptosis and NLRP3 inflammasome complex. Expression levels of NLRP3 components were determined by qPCR. Enhanced random coils, 3(10) helices, β-turns, and loop structures were identified in old rats and young rats with old plasma. Young rats and old rats with young plasma displayed higher α-helices and β-sheet structures. Young rats with old plasma showed increased NLRP3, ASC, caspase-1, IL-1β, and IL-18 mRNA levels, indicating an inflammatory response. Whereas old rats with young plasma exhibited lower inflammation levels. Histological evaluations revealed that young rats receiving aged plasma showed significantly increased levels of NLRP3, ASC, caspase-1, IL-1β, TNF-α, VEGFR2, RIPK1, and MLKL immunoreactivity, whereas decreased immunoreactivity in aged rats receiving young plasma. These findings suggest that young plasma reduces NLRP3 inflammasome activation and necroptosis in aged rats.
Therapeutic potential of young plasma in reversing age-related liver inflammation via modulation of NLRP3 inflammasome and necroptosis.
年轻血浆通过调节 NLRP3 炎症小体和坏死性凋亡逆转年龄相关性肝脏炎症的治疗潜力
阅读:11
作者:Baba Burcu, Ceylani Taha, Teker Hikmet Taner, Keskin Seda, Genc Aysun Inan, Gurbanov Rafig, Acikgoz Eda
| 期刊: | Biogerontology | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 May 26; 26(3):117 |
| doi: | 10.1007/s10522-025-10260-9 | 研究方向: | 免疫/内分泌 |
| 信号通路: | 炎性小体 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
